Majors and Areas of Study

Faculty of AGRICULTURE

Sciences for Life, Food, and Environment

Five departments offer opportunities to acquire academic and advanced knowledge and develop broadened perspectives.

faculty_of_agriculture1.pngThe objective of the Faculty of Agriculture is to provide opportunities to learn about agriculture and related knowledge and to nurture individuals with a solid sense of social responsibility. The Faculty supports the following objectives: (1) to ensure students develop broad perspectives enabling them to envision scientific solutions to address the challenges that mankind are facing, (2) to ensure students understand the significance of the agriculture, forestry, and fisheries industries, including the importance of food- and life science-related industries for society, and (3) to ensure students understand the latest developments in both natural and social sciences related to life, food, and environment. To achieve these objectives, the Faculty of Agriculture has six departments, all of which strive to create a liberal academic culture, one of the Faculty's most respected characteristics, intent on nurturing graduate, who view issues with an open mind and seek holistic solutions to problems.
Human society coexists with various organisms, such as animals, plants, and microorganisms, on the Earth for our survival. To use these bioresources more sustainably, it is essential to acquire a deep understanding about the mechanisms, by which organisms maintain their life and the ways, in which ecosystems are constructed. Additionally, analysis through technological expertise and social science methodologies is also needed to ensure human activities support vital ecosystems. Students are required to obtain fundamental knowledge offered by the individual department, in which they major and to make active efforts to broaden their vision by extending their interest into related fields.
In next academic year, 5 of 6 Departments, namely the Department of Bioresource Science (Agricultural Biology), Department of Applied Life Sciences (Agricultural Chemistry), Department of Agricultural and Environmental Engineering, Department of Food and Environmental Economics and Department of Forest and Biomaterials Science offer opportunities to study in the Faculty of Agriculture.


Year 1 / Introductory learning

In the Faculty of Agriculture, students are enrolled in the individual department upon admission and follow a four-year education program specified by their departments. In addition to knowledge about natural sciences, such as biology, chemistry, and physics, methodologies used in social sciences must also be learned to study the agricultural sciences. The departments have established integrated curricula (lecture programs) that incorporate liberal arts subjects together with specialized subjects. It is important for first-year students not to limit their study within the disciplines selected in their departments in order to expand their base of knowledge. Therefore, first-year students should primarily concentrate on general education subjects, including subjects in natural sciences, humanities/social sciences, and foreign languages. They can also participate in health and physical education courses or add other subjects, including courses in international education, which provide opportunities for social exchanges with international students.


Years 2 and 3 / Enhanced learning

Second-year students take the basic courses in their specialized subjects in the second semester of Year 2 (autumn and winter) and prepare for a more intense specialized education in Year 3. In addition to lectures, the Faculty preferentially offers students opportunities to participate in specialized courses offering experiments, practical exercises, and seminars. In this way, students receive high-quality training in experimental techniques and methods, in preparation for specialized study later in their respective departments. The Faculty is one of the most enthusiastic at Kyoto University in terms of encouraging international exchange activities, sending many undergraduates to international institutions.
In the third year, students only take specialized subjects. Year 3 is an important year as the students take their first significant steps toward becoming researchers. The third year is when students must determine their study fields (laboratories). Third-year students are required to investigate their future career options by visiting laboratories and attending lectures with regularity. The departments have well-designed mechanisms to help assign third-year students to their laboratories.


Year 4 / Finalized learning

In Year 4, students work on research projects and assignments in their research fields throughout the year and prepare graduation theses. This is the first step they take as researchers by working on contemporary topics with graduate students under the supervision and mentorship of academic staff. Therefore, fourth-year students are devoted to their own research, as well as assigned work in their study field seminars. Students intent on pursuing advanced studies also need to prepare for the Graduate School entrance examination. The students who earn the required credits are awarded a bachelor's degree (in agriculture).

Study programs in the five departments

Department of Bioresource Science (Agricultural Biology)

bioresource_4.pngHumans have harnessed a vast diversity of plants, animals, and microorganisms that inhabit and flourish on the land or in the ocean--not just to sustain our livelihoods and activities, but also to support and enrich our daily lives. For centuries, humans have applied a great deal of effort and wisdom to find ways to grow and raise bioresources so as to maximize their potential and to develop environments suited for their habitation and growth, while at the same time improving such precious resources to better serve our purposes at any given time. These efforts have paid off to an extent, and an abundance of food and other necessities are within easy reach in some countries. On a global scale, however, humans are faced with the harsh reality that food production is not likely to keep pace with the population explosion of this century, and the excessive use of bioresources is severely damaging the global environment and destroying ecosystems. As this is the case, the citizens of earth are required to confront the momentous challenge of ensuring the stable production of bioresources and constantly increasing their productivity and quality. At the same time, we must achieve harmony with the environment and reduce negative impacts on ecosystems.

The Department of Bioresource Science offers a broad range of educational opportunities, from foundational knowledge to applied technology, in order to develop individuals who are ready to tackle this immense challenge. The Department covers as many as thirty-one specialized fields (see below for details) to study a diverse range of organisms, including food crops and other plant resources, livestock and other animal resources, and seafood and microorganisms in the ocean, from multifaceted perspectives on macro and micro levels, i.e., from populations and individuals to cells and molecules. Relatedly, efforts are being made to carry out various research projects, in a bid to protect each bioresource from invasive enemies, maintain preferred growth/habitation environments, and ensure high productivity in adverse environments. Some of those projects even attempt to create new species.

Due to the broad range of subjects and disciplines within this Department, the educational curriculum is structured into four course options as outlined in the table below. During the first and second years, students initially study bioresource science in its entirety. As they enter the third year, students select one of the courses based on their growing interests and affiliations. In their fourth year, students further narrow down their focus by choosing specific fields within their selected course.

Course Fields
Plant Production Science Crop Science, Plant Breeding, Vegetable and Ornamental Horticulture, Pomology (Fruit and Fruit Tree Science), Plant Production Systems, Plant Production Control, Quality Analysis and Assessment, Food Quality Design and Development, Weed Science, Tropical Agriculture, Soil Science
Animal Science Animal Breeding and Genetics, Reproductive Biology, Nutritional Science for Animals, Animal Physiology and Functional Anatomy, Animal Husbandry Resources, Bioresource Informatics
Marine Life Science Fisheries and Environmental Oceanography, Marine Stock Enhancement Biology, Marine Microbiology, Marine Environmental Microbiology, Marine Bioproduct Technology, Marine Biological Function
Fundamental and Frontier Biology Plant Genetics, Plant Physiology, Crop Evolution, Plant Pathology, Insect Ecology, Insect Physiology, Terrestrial Microbial Ecology, Ecological Information


Keywords for Each Field of Affiliation

<Plant Production Science>

  • Crop Science
    Food production and the environment, crop productivity and genotype-environment interaction, environmental stress tolerance, growth and development prediction modeling, information measurement, environmentally conscious crop production technology
  • Plant Breeding
    Breeding of rice, soybean, and wheat, genomic and genetic analysis of important agronomic traits, transposon as a source of genetic variation, plant-microbe interaction in soil, mutation, morphogenesis, gametogenesis, genetic resources
  • Vegetable and Ornamental Horticulture
    Environment control and growth and development control, development of functional vegetables, elucidation of flower color mutation mechanisms, breeding of useful varieties, application of organic matter to plants in an unsterile environment by using chlorination and insoluble phosphoric acids
  • Pomology (Fruit and Fruit Tree Science)
    Fruit tree physiology of flowering and fruit set, fruit development/ripening mechanisms, fruit tree breeding and biotechnology, fruit tree molecular genetics, postharvest physiology of fruit
  • Plant Production Systems
    Agricultural production ecosystem, paddy-upland rotation, nitrogen cycle, environmentally friendly agricultural production system, remote sensing
  • Plant Production Control
    Genetic seedlessness in fruits vegetables, mechanism of selfish genes, elucidation of floral regulatory mechanism, cross combination and seed development, elucidation of fruit development and senescence mechanisms, development of postharvest technology, development and application of next-generation type crop model, farm system for generating crop and renewable energy together
  • Quality Analysis and Assessment
    Molecular mechanism on gustation, flavor, sensory evaluation, palatability, functional compound, mass spectrometry, metabolomics
  • Food Quality Design and Development
    Molecular design, food proteins and enzymes, food allergy, environmental allergy, plant protein utilization, antibody, protein engineering
  • Weed Science
    Weed management, life-history traits of weeds, herbicide-resistant biotypes of weeds, invasion/colonization and dissemination of invasive weeds, crop-weed complexes, mimetic weeds
  • Tropical Agriculture
    Agricultural resources, meteorological environment, water dynamics of soil and plants, environmental stress, cropping system analysis, changes in land utilization, distribution and transmission of crops, environment and physiology of tree crops, tropical horticulture, GIS
  • Soil Science
    Degradation of tropical land and arid land and soil management technology, material dynamics in the soil ecosystem, evaluation of and restoration from soil pollution, space variation analysis of soil characteristic values, analysis of soil nutrient supply mechanisms

<Animal Science>

  • Animal Breeding and Genetics
    Genetics of qualitative and quantitative traits, systems biology, omics analysis, big data analysis, genetic assessment, breed improvement, individual classification, preservation of animal resources and rare animals
  • Reproductive Biology
    Oocytes, preimplantation embryos, zygotic genome activation, cell differentiation, reprogramming, epigenetics, developmental origins of health and disease, mammalian embryogenesis, in vitro fertilization, transgenic animals, genome edition
  • Nutritional Science for Animals
    Comparative animal nutrition, nutritional physiology, adipocyte differentiation, vitamin nutrition, mineral metabolism, metabolic regulation by bioactive substances in food and feed
  • Animal Physiology and Functional Anatomy
    Evaluation of animals' physiological and producing functions, animals' ecophysiology and global warming, environmental pollution and endocrine-disrupting chemicals, cryopreservation of ovaries
  • Animal Husbandry Resources
    Biological and economic assessment of animal production systems, comparison of animal production systems from around the world, environmentally sound animal production, evaluation of animal genetic resource conservation plans
  • Bioresource Informatics
    Research on how to extract, analyze, and use the information on the utilization and conservation of bioresources in terrestrial and marine environments using big data, biotelemetry, and environmental DNA.

<Marine Life Science>

  • Fisheries and Environmental Oceanography
    Coastal ocean, conservation of the marine environment, fisheries oceanography, marine ecosystem mechanisms, transportation of organisms/substances, interactions among rivers, coastal seas, and open seas, mechanisms of eutrophication and poor oxygenation, stable isotope ratio, material cycle
  • Marine Stock Enhancement Biology
    Metamorphosis, hormone, organismal physiology, morphological abnormality, early life history, population structure, species diversity, interspecific hybridization
  • Marine Microbiology
    Marine hyperthermophilic archaebacteria, deep-sea hydrothermal environment, physiology and ecology of extremophiles, extremozymes, biohydrogen production, physiology and ecology of denitrifying bacteria, genomic analysis and genetic diagnosis of poisonous microalgae
  • Marine Environmental Microbiology
    Our research interests include microalgal productions of ω-3 fatty acids, carotenoids and biofuels by genetic analyses and engineering. In addition, we have studied ecophysiology and evolution of 'earth-eating' microorganisms inhabiting various extreme marine environments such as deep-sea hydrothermal fields.
  • Marine Bioproduct Technology
    Unused resources, functional food, search for physiologically active substances, physiology of highly unsaturated fatty acids, molecular control of lipid metabolism
  • Marine Biological Function
    Marine biological function, gene manipulation for fish, genome editing, fish genetics, genetic improvement of cultured fish, functional food, health promoting compounds in marine products, marine peptide, biological active compounds.

<Fundamental and Frontier Biology>

  • Plant Genetics
    Wheat, cell genetics, genome, chromosome, disease resistance, polyploid, cytoplasmic inheritance, population genetics, evolution, hybrid incompatibility, speciation, bioinformatics
  • Plant Physiology
    Regulation of growth phase transition in response to environmental signals, flowering, long-distance systemic signaling in development (florigen), sexual reproduction process (especially germline specification and gametogenesis), origin and evolution of regulatory systems for plastic development
  • Crop Evolution
    Evolution of crop plants and their wild relatives, plant genomics and genetics, co-evolution of plants and humans, co-evolution of plants and pathogens, bioinformatics, ethnobotany, genetic resource management, fieldwork, natural history
  • Plant Pathology
    Plant pathogenic fungi, plant viruses, host specificity, plant immunity, virulence factors, generation of resistant plants, coevolution, molecular biology, omics, bioinformatics
  • Insect Ecology
    Evolutionary ecology, behavioral ecology, reproductive strategies, social insects, transgenerational epigenetic inheritance, self-organizing system, longevity
  • Insect Physiology
    Physiology, endocrinology, molecular genetics, genomics, developmental biology, evolutionary biology, evo-devo, eco-evo-devo
  • Terrestrial Microbial Ecology
    Mycology, fungal genetics, fungal adhesion and penetration mechanism, mode of action of fungicide
  • Ecological Information
    Interaction among agricultural fields, natural enemies, integrated pest management, biological control, spider mites and minute pest insects, molecular ecology, genetic variation, evolution of adaptive characters, insecticide resistance

Back to list of departments

Department of Applied Life Sciences (Agricultural Chemistry)

Applied_Life_Science_1.jpgThe 21st century is said to be the era of "bioindustry," and it is thought to be a time of progress for the environment, food, energy, health, and welfare. At the core of this fast-growing sector is biotechnology, a means of utilizing biological functions in advanced applications.

At the Department of Applied Life Sciences, students learn basic and advanced knowledge across a broad range of academic disciplines, giving them the ability to follow the principles of life phenomena. This in turn allows them to analyze various issues that may arise on the frontlines of agricultural production, the fermentation, food processing, and chemical industries, and environmental conservation, and then to apply their research findings to the burgeoning realm of biotechnology.

Our Department encompasses the 13 fields of education and research below, which cover a wide range of organisms--from humans to microbes. The underlying academic purpose here is to elucidate life phenomena on the molecular level. Targeting inorganic compounds, low-molecular organic compounds, and other biomolecules such as nucleic acids, proteins, lipids, and polysaccharides, we set for ourselves the task of bringing to light biofunctions that may be caused by properties of individual molecules as well as interactions among molecules. Another fundamental research topic is the elucidation of how biomolecules work in relation to their cell structures.

To serve these purposes, we offer a four-year integrated curriculum. In the first two years, students take common basic subjects of physical chemistry, organic chemistry, and biochemistry, as well as introductory subjects that cover the entire range of academic disciplines that our Department has to offer, so that they can set their own learning goals. In the last two years, students systematically learn a broad range of disciplines--from basic to applied research--that concern animals, plants, and microorganisms, while performing lab work and practical training carefully prepared for them to understand related theories empirically. In the fourth year, students are assigned to laboratories, where they learn about approaches and attitudes toward creative research as they work on new challenges as budding researchers.

Through this curriculum, we develop self-driven biotechnology researchers and engineers who can respond to societal demands. Successful students must be motivated with a sharp and clear vision and be fully prepared to challenge themselves to attain their educational objectives.

Through its research and education, the Department of Applied Life Sciences aims to develop students who:

  1. Study organisms and life phenomena deeply at the cellular and molecular levels and understand them in a chemical context;
  2. Understand the commonality and diversity of biofunctions of microorganisms, plants, and animals;
  3. Spearhead new discoveries and inventions to applied research; and
  4. Gain skill with research approaches and logical thinking through the aforementioned research experience and make the most of applied education through lectures by guest speakers from private enterprises and visits to plants.


Keywords for Each Field of Affiliation
  • Cellular Biochemistry
    Extracellular matrix, collagen, cell adhesion, cholesterol homeostasis, signal transduction, structure and functions of membrane proteins, migration and metastasis of cancer cells
  • Biomacromolecular Chemistry
    Correlation between dynamic structure and functional expression of biological macromolecules based on atomic-level measurements, elucidation of mechanisms of gene expression, and basic and applied research on life, health, and food
  • Bioregulation Chemistry
    Organic chemistry, mass spectrometry, bioactive molecules, animal toxins, crop protection
  • Chemical Ecology
    Chemical interpretation of survival strategies of living organisms, specifically plant stress tolerance, insect adaptations, host-discrimination substances, defence compounds and insect hormones, based on organic chemistry of physiologically active substances
  • Plant Nutrition
    Molecular mechanism of photosynthesis, plant nutrition and growth, plant metabolism and functions, environmental, stress and plants, algal biotechnology
  • Fermentation Physiology and Applied Microbiology
    Applied microbiology, including fermentation, stemmed from screening and breeding of useful microorganisms with unique functions for useful substance production, health promotion, crop and food production, environmental control, and ecosystem management
  • Microbial Biotechnology
    Metabolism and physiology of C1-microorganisms, heterologous gene expression, organelle dynamics, autophagy, plant-microbe interaction, redox dynamics, bioconversion of natural gas
  • Bioanalytical and Biophysical Chemistry
    Bioelectrochemistry, enzymatic catalysis chemistry, photosynthesis and respiratory energy conversion, biosensors, microbial fuel cells, analysis of nitrogen metabolism
  • Biofunctional Chemistry
    Chemical biology, organic chemistry, bioenergetics, mechanisms of mitochondrial respiratory enzymes
  • Applied Structural Biology
    Appearance and workings of proteins, X-ray crystallography, folding of polypeptides, functional improvement of proteins
  • Molecular Microbiology
    Metabolic stress and signaling, microbial biotechnology, microbial genome science, mechanism of gene expression, mechanism of response to environmental stress, reactive oxygen species and biological defense system, proteomics and metabolome.
  • Molecular and Cellular Biology
    Totipotency of plant cells, functional differentiation of chloroplasts, photosynthetic function and stress tolerance, functional expression of secondary metabolism and production of useful substances, molecular breeding of plant cell functions
  • Plant Molecular Biology
    Environmental response of photosynthetic organisms, reproduction of plants, genome science of plants, gene expression control, molecular genetics

Back to list of departments

Department of Agricultural and Environmental Engineering

Faculty of Agriculture_ICT_Agri.jpgFood security is the most vital necessity for the survival of humanity. In this respect, agriculture is one of the most sublime and fundamental human activities, playing an integral part in the process of food production. It is believed that agriculture (cultivating plants and livestock) dates back roughly 10,000 years. The "discovery" of agriculture (i.e., a new method of procuring food whose carrying capacity was much higher than that of conventional ways of hunting and gathering) led humankind on to a path of rapid evolution. From that point onward, humans have utilized wisdom and innovation to advance and sustain the art of agriculture while meeting the needs of our times. At the same time, progress in engineering and technology that form the foundations of agricultural production has been instrumental in enhancing the productivity of land and agriculture workers. This is evidenced by the fact that the Faculty of Agriculture, Kyoto University had an engineering department (the Department of Agriculture and Forestry Engineering, later reorganized into an engineering department, the Department of Agriculture Engineering, to specialize in agriculture studies) since its inception in 1923 to conduct pioneering education and research on engineering/technical strategies and methodologies that maximize agricultural productivity. Towards the end of the last century, the emergence of global issues that could threaten the survival of humankind promoted a paradigm shift, and it also became necessary in the engineering field to redesign our basic research approaches to and perspective on the world under the more comprehensive and contemporary framework of "the environment." Based on this background, the Department of Agricultural and Environmental Engineering came to be in 2001.

Faculty of Agriculture_Water Facilities.jpgThis Department is devoted to research and education on the use of engineering and technology in "agricultural and farming regions;" namely, rural regions in which people engage in agricultural production activities for a living. Recent years have seen a growing recognition that rural regions have much more distinguishing precious features, compared to urban regions. This renewed recognition is chiefly attributable to the multifunctionality of agriculture, which serves the preservation of national land, the natural environment and ecosystems, on top of its inherent function of food production. Now, for rural regions to develop in a sustainable manner, it is necessary to properly develop and preserve water and soil (land), two key elements of environmental infrastructure in such regions, the production environment, such as production control systems and systems for harvesting, processing, and storing farm products, and the living environment in the regions. At the same time, harmony with the natural environment must be achieved. It is also important to utilize wisely potential resources unique to the rural regions, such as the development of biomass energy. The concept of "achieving harmony with the natural environment" means to stop to think how humankind should produce food and develop energy, both of which are necessary for human survival, while working in harmony with biosystems, ecosystems, and landscapes by respecting their inherent right. "All regions are cells of planet Earth," and maintaining a sound regional environment is vital for the conservation of the global environment. To make this ideal state of rural regions a reality, it is crucial to pursue engineering and technology studies in the realm of applied science based on the solid foundations of interdisciplinary fundamental sciences, with fields ranging from natural science to social science. Studies of agricultural and environmental engineering take scientific approaches to rural regions within such a paradigm. As a body of engineering and technological knowledge, these systematic studies are expected to play a significant role in solving the problems that threaten the survival of humankind, including those concerning agriculture and farming villages, the environment, and food and energy.

Education at the Department of Agricultural and Environmental Engineering is given mainly in seven research fields, which are divided into four fields of the "Rural Environmental Engineering" and three of the "Bioproduction Engineering." The first- and second-year students gain a basic overview of agricultural and environmental engineering, while third-year students mainly take subjects from a family to which the field that they plan to be affiliated with in their fourth year belongs.

In the fields of the "Rural Environmental Engineering" which consists of 4 fields (Agricultural Facilities Engineering, Water Resources Engineering, Hydrological Environment Engineering, and Rural Planning), students learn about theories for creating rich and beautiful regional environments that encompass production, living, and natural spaces. They also go on to learn how to improve and conserve such regional environments with engineering techniques that work on water, soil, and the environment, as well as study the technological approaches needed to achieve this. Students also learn how to utilize water and land in a regional setting with the conservation of national land and the environment in mind, along with how to plan, design, construct, and maintain various structures that give a concrete shape to their learning outcomes.

In the fields of the "Bioproduction Engineering" which consists of 3 fields (Agricultural Systems Engineering, Field Robotics, and Bio-Sensing Engineering), students learn how they should go about controlling production, harvesting, processing, and storing food, and developing biomass energy. They do so while considering not only the local natural environment but also the global environment, resource circulation, labor-saving, and energy-saving, as well as learning their underlying principles. Students are also expected to learn the skills and methodologies needed to realize all of the above. To this end, students study relevant bioresources, information processing, systems design, measurement and sensing technologies for organisms, machine design, mechatronics, physical properties of farm products and their non-destructive quality evaluation, and processing technology.

  • environmental_engineering1.jpg

Keywords for Each Field of Affiliation

<Rural Environmental Engineering>

  • Agricultural Facilities Engineering
    Storage dams, underground dams, water facility design theory, analysis of water-use structure inverse problems, constitutive equation and structures of soil, geotomography of foundation ground, seismic design of structures
  • Water Resources Engineering
    Optimal management of water resources and hydro-environments, hydro-environment modeling, dynamics of farm irrigation systems, rainwater harvesting, multiple functions of reservoirs and paddy fields for agriculture
  • Hydrological Environment Engineering
    Irrigation and drainage, soil physics, hydrology, hydrochemistry, regional water and geochemical cycle management, groundwater management, water and soil quality conservation, agricultural water management for climate change adaptation and mitigation
  • Rural Planning
    Rural sustainability, community development planning, rural revitalization, landscape planning, participatory planning tools, resource management, resilience building, social capital, knowledge management, system modeling, multi-agent simulation, virtual reality, information communication technology and drama theory

<Bioproduction Engineering>

  • Agricultural Systems Engineering
    Biomass energy, optimization of food production, system analysis, LCA for environmental management, resource recycling, methane fermentation, sensing and data analysis for soil, plant, and environment, data science
  • Field Robotics
    Robot farming, intelligent farm machinery, precision agriculture, remote sensing, monitoring of plant growth, GPS/GIS, artificial intelligence (AI) for agricultural machinery, harmful animal repelling system by AI
  • Bio-Sensing Engineering
    Physical properties of agricultural and aquacultural products and foods and their non-destructive quality evaluation, near-infrared spectroscopic imaging, prediction of peak ripeness, freshness determination, detection of rice bran traces, identification of individual farm animals by biometric authentication techniques, traceability, food manufacturing process monitoring technology

Back to list of departments

Department of Food and Environmental Economics

foodandenvironmental1.JPGOf the challenges that humankind faces today, those concerning food and environment are particularly relevant to everyday life. Although they are faced differently depending on the context, food issues and environmental problems arise in both developed and developing countries, regardless of political and economic system. Indeed, they are increasingly understood as the consequence of economic policies fixated on growth and rapid development. With growing awareness of our declining natural resources, more emphasis has been placed on the possibilities for sustainable development. To bring about such an alternative development path, governments around the world need to not only adjust their domestic policy, but also to coordinate with their counterparts at the global level to ensure that progress can be achieved collaboratively at the international scale. Unlike manufacturing industries, which rely on inorganic resources and global commodities, agriculture, forestry, and fisheries have a uniquely local character that is rooted in natural ecosystems and communities. Here, sustainable development means achieving harmony between economic output, environmental conservation, and local culture. We strongly believe that since food and environmental problems are the byproducts of human institutions and economic systems that humans can also solve these problems.

The Department of Food and Environmental Economics aims to find solutions to these problems using a diverse social science approach, while at the same time absorbing relevant knowledge and experience from the natural science approach of the departments in the Faculty of Agriculture. This organization allows us to determine how research findings can be applied and accepted in the real world, with the ultimate goal of encouraging more progressive and interdisciplinary scientific approaches in the agricultural sciences.

foodandenvironmental3.JPGTo this end, we deliberately look at agricultural production in a broader cultural and economic context. While other departments in the Faculty of Agriculture adopt predominantly natural science methods, this Department alone advocates a social science approach, rooted in the belief that this can better clarify the nexus of human and natural activities that comprise agriculture. In more concrete terms, we study the characteristics of people working in agriculture, forestry, fisheries, and livestock businesses as well as the social and economic contexts, such as the farm, mountain, and fishing villages they work in, with an eye toward developing rural industries sustainably and equalizing conditions with urban areas. To balance conservation of local environment and culture at both regional and global levels with the need to encourage economic advancement, we draw insight from international studies of agriculture, rural and urban community development studies, and environmental management as well as relevant industries.

The Department of Food and Environmental Economics is divided into eight fields of education and research, which can be roughly clustered into three groups, as outlined below.

The first group covers two fields, in which students take micro-level approaches to studying problems involving agriculture and farm families. In these fields, students learn agricultural business management and accounting information processing to understand agricultural problems from the perspectives of individual farming families and agricultural organizations. As such, this group relies primarily on field survey methodology. The second group comprises four fields that provide students with a micro- and macroscopic approach to resource and environmental problems on a regional level using rigorous empirical analysis. In these fields, students have opportunities to encounter current food and environmental problems from regional and national perspectives and then learn basic theories about conservation and development of regional environmental resources, policies for agriculture and forestry, and the development of farming communities in developing countries. The third group includes two fields in which students consider issues of food, agriculture and farming communities on the basis of history and philosophy, learn basic techniques to discover how such issues have evolved, and conduct cross-national comparisons. In these fields, students are given opportunities to examine the industrial and post-industrial aspects of agriculture, forestry, and fisheries and food system development, as well as the impact that historical trends have had in shaping farming communities, rural-urban relationships and, more generally, agriculture as a field of science.


Keywords for Each Field of Affiliation
  • Agri-Food System Management
    Management and structure/behavior of agri-food organizations, environmental changes and development of farm management, distribution and marketing of agricultural products, comparative institutional analysis of farm management around the world, roles of family-run farming, food system/agribusiness, fair trade, agricultural/consumer cooperatives, food safety management
  • Farm Managerial Information and Accounting
    Planning and managing farm systems under uncertainty, business improvement, business growth/development, business administration, technical/management/accounting information, competency of business managers and enterprise operators, HR development/training, industrial organizations offering management support services, survey methods for farming communities, regional agriculture, and farm management
  • Regional Environmental Economics
    International and domestic food supply/demand and environmental problems, sustainable development of regional economies and environmental conservation, farm product trade and regional environments, technical change and productivity of agricultural sector, agricultural land issues, problems in hilly and mountainous areas and subsidies, commons and regional resilience
  • Agricultural and Environmental Policy
    Global environmental problems, outlook of food supply/demand, multiple functions of agriculture and farming communities, external economic effects, import liberalization of farm produce, economic analysis of food safety, agriculture and biodiversity, GIS
  • Forest Policy and Economics
    Forest resources in Japan and abroad, forestry production, forestry and lumber industries, production, supply, distribution, and consumption of timber, timber trade and environmental system, revitalization of mountain villages, ecosystem management, environmental functions of forests
  • International Rural Development
    Agricultural development, poverty, rural institutions, income inequality, consumption smoothing, social capital, culture, risk sharing, area studies, field survey, political economy, field experiment, development economics
  • Comparative Agricultural History
    Development patterns of socioeconomy and agriculture, history of relationships between urban and rural communities, history of relationships between agriculture and nature (technology, production capacity), history of farmers/history of farming communities/history of farmer movements, modern world-systems and agricultural problems and policies
  • Philosophy of Agricultural Science
    Roles of agriculture, forestry, and fisheries in various human societies, changes in agriculture and farming communities around the world, issues and methodologies of new agricultural science, world food problems, exchange and unification between urban and farming communities

Back to list of departments

Department of Forest and Biomaterials Science

Forestandbiomaterials1.JPGRecognizing that excessive and non-sustainable use of resources is the main drivers of global environmental problems, we must move away from a mere emphasis on economic productivity to a new set of social priorities that achieve sustainable and environmentally friendly use of natural resources. In other words, we must seek for a new way that enables harmonious coexistence of the earth and the humankind. Globally, forests cover 31% of the land, and they provide various ecosystem services including production of renewable resources. Hence, conservation and protection of forests, in combination with utilization of forest-based resources, are important for the survival of the human kind. More than ever, we need young people who can develop innovative strategies based on scientific understanding of forests and forest resources, in order to tackle global environmental issues.

Forestandbiomaterials4.JPGThe Department of Forest and Biomaterials Science promotes research and education on forests and the various forest-based resources. Our unit conducts basic research on forests, including biological and biogeochemical research addressing biodiversity and ecosystem matter cycles. We also analyze chemical and physical properties of wood, cellulose and various organic substances. We also conduct applied research relevant for reduction of greenhouse gas emission. and for achieving a society with sustainable resource cycles. In addition to natural science approaches, we use sociological and economic approaches. Through collaboration of researchers across various fields of specialization, we aim for a transdisciplinary science on forests and biomaterials. In educational activities, we aim to nurture broad perspectives on forest science, as well as to build capacities for investigation through thesis research activities.




Forestandbiomaterials3.JPGThe Department of Forest and Biomaterials Science has 17 laboratories, covering a wide range of research topics. They can be grouped roughly in three groups. The six laboratories in the first group, including "Forest Biology", "Forest Ecology", "Tropical Forest Resources and Environments", "Forest Hydrology", "Forest Utilization", and "Biosphere Informatics", conduct basic and applied research on forest ecosystem. The eight in the second group, including the laboratories of "Wood Processing", "Biomaterials Design", "Fibrous Biomaterials", "Tree Cell Biology", "Chemistry of Composite Materials", "Chemistry of Biomaterials", "Forest Biochemistry", and "Energy Ecosystems", conduct basic and applied studies on biomaterials. The three laboratories in the third group, including "Forest Resources and Society", "Landscape Architecture", and "Erosion Control", study management of forests and landscapes, as well as disaster preventions in forested hills and mountains. In addition to these core laboratories, the Field Science Education and Research Center and the Research Institute for Sustainable Humanosphere support our research and education missions through their field research center in Hokkaido and Ashiu, or through their large or advanced experimental facilities.

During the first three years of our curriculum, undergraduate students will build foundational and comprehensive knowledge on forest and biomaterials science through lectures and field and lab courses. The 4th year students belong to one of the 17 laboratories to conduct thesis research. Our goal is to help students obtain specialized knowledge on forests and biomaterials, and build capacity to contribute to research and innovation with high moral standards.


  • Landscape study of historical building

  • Reconstructed forest structure from laser scanning

  • Nano-celullose vehicle body for sustainable future (Provided by Ministry of the Environment Government of Japan)

Keywords for Each Field of Affiliation
  • Forest Resources and Society
    Deforestation and conservation, sustainable forest management, small-scale forestry, forest industry, silvotourism, forest and culture, forest certification system, forest resources and rural livelihoods
  • Tropical Forest Resources and Environments
    Functional understanding of forest trees and forest ecosystems, plant functional traits, forest stand structures, light utilization, seedling regeneration, plant-soil interactions, ecosystem matter cycles, sustainable forest management, climate-change mitigation and adaptation, with emphasis on tropical forests in Asia, Africa and Latin America.
  • Forest Utilization
    Forests' functions on environmental conservation, biomass production of forests, growth dynamics of trees' root system, effect of environmental factors on tree growth and xylem formation, plantation management and wood quality
  • Forest Biology
    Forest structure and dynamics, biodiversity conservation, phylogenetic and ecological analysis of forest organisms based on genetic/genomic information, prevention of forest damage caused by wildlife, interaction between forest insects and trees, insect damage control
  • Landscape Architecture
    History of gardening, planning and design of gardens, urban parks, nature parks, conservation of landscape and biodiversity, urban afforestation, natural restoration, assessment mitigation of natural environments
  • Erosion Control
    Prevention and mitigation of sediment disasters, impact of forest management on rainwater discharge, impact of forest management on sediment discharge, rainwater holding capacity of forest soil, prediction and forecast of debris flow, mechanisms of slope failure and landslides, warning and evacuation system against sediment disasters
  • Forest Ecology
    Diversity of forest organisms, material cycle mechanism, soil decomposing organisms, plant behaviors, forests ecosystems from the arctic to the tropical
  • Forest Hydrology
    Hydrological cycle, carbon cycle, gas exchange, ecosystem fluxes, plant-water relations and eco-physiology, methane dynamics, precipitation-runoff response, water quality formation, longterm monitoring
  • Biosphere Informatics
    Geographical information systems, remote sensing, ecosystem modeling, conservation ecology, ecosystem service evaluation, environmental observation methods, ecological/environmental information systems and database
  • Biomaterials Design
    Physical properties of forest biomass materials (lumber, bamboo, etc.), elucidation of properties of new wood-based materials, image analysis of wood surfaces, wood and human relations, fracture mechanics of wood, effective use of hardwoods from satoyama woodlands
  • Wood Processing
    Technologies of wood processing, nondestructive evaluation of wood property and degradation of wood, and automatic recognition of wood and its processing
  • Fibrous Biomaterials
    Structure and properties of cellulose and other polysaccharides, synthesis of polysaccharides by genetically engineered enzymes, functionalization of polymers by magnetic field orientation, development of novel NMR/MRI methods, decomposition of biomass in environmental water
  • Tree Cell Biology
    Forest resources of the world, growth of trees, formation and function of cell walls, significance of forms and diversity of organisms, from macro to micro
  • Chemistry of Composite Materials
    Precise polymer synthesis, block/graft copolymers, liquid crystalline polymers, biomass-based polymer blends, conversion of biomass to plastic materials, liquefaction and resinification of biomass, biodegradable plastics, bioplastics/nanofiller composites, structure-property-performance relationships of biomass-based functional materials
  • Chemistry of Biomaterials
    Organic chemistry of biomass, elucidation of structure, properties, physiological bioactivity, and functions of cellulose, hemicelluloses, lignin, and extracts (tannin) and their utilization, efficient use of tropical forest produce
  • Forest Biochemistry
    Material cycle of forests, molecular biology of wood-rot fungi, genetic engineering, genome editing, biodegradation mechanism of wood, biotechnology of fungi, plant tissue culture, DNA/RNA analysis of trees, translocation of sugar in plants, flowering control mechanism, plant molecular biology of bamboo, bamboo grass, and rice
  • Energy Ecosystems
    Biomass, bioenergy, biochemicals, bioethanol, biodiesel, high temperature wood chemistry, molecular level thermal degradation mechanism, reaction control of pyrolysis/gasification, supercritical fluids, plasma treatment

Back to list of departments

↑